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Lecture 10

Solution via Laplace transform and matrix
exponential

• Laplace transform

• solving ẋ = Ax via Laplace transform

• state transition matrix

• matrix exponential

• qualitative behavior and stability
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Laplace transform of matrix valued function

suppose z : R+ → Rp×q

Laplace transform: Z = L(z), where Z : D ⊆ C → Cp×q is defined by

Z(s) =

∫

∞

0

e−stz(t) dt

• integral of matrix is done term-by-term

• convention: upper case denotes Laplace transform

• D is the domain or region of convergence of Z

• D includes at least {s | ℜs > a}, where a satisfies |zij(t)| ≤ αeat for
t ≥ 0, i = 1, . . . , p, j = 1, . . . , q
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Derivative property

L(ż) = sZ(s) − z(0)

to derive, integrate by parts:

L(ż)(s) =

∫

∞

0

e−stż(t) dt

= e−stz(t)
∣

∣

t→∞

t=0
+ s

∫

∞

0

e−stz(t) dt

= sZ(s) − z(0)
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Laplace transform solution of ẋ = Ax

consider continuous-time time-invariant (TI) LDS

ẋ = Ax

for t ≥ 0, where x(t) ∈ Rn

• take Laplace transform: sX(s) − x(0) = AX(s)

• rewrite as (sI − A)X(s) = x(0)

• hence X(s) = (sI − A)−1x(0)

• take inverse transform

x(t) = L−1
(

(sI − A)−1
)

x(0)
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Resolvent and state transition matrix

• (sI − A)−1 is called the resolvent of A

• resolvent defined for s ∈ C except eigenvalues of A, i.e., s such that
det(sI − A) = 0

• Φ(t) = L−1
(

(sI − A)−1
)

is called the state-transition matrix ; it maps
the initial state to the state at time t:

x(t) = Φ(t)x(0)

(in particular, state x(t) is a linear function of initial state x(0))
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Example 1: Harmonic oscillator

ẋ =

[

0 1
−1 0

]
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sI − A =

[

s −1
1 s

]

, so resolvent is

(sI − A)−1 =

[ s
s2+1

1
s2+1

−1
s2+1

s
s2+1

]

(eigenvalues are ±j)

state transition matrix is

Φ(t) = L−1

([ s
s2+1

1
s2+1

−1
s2+1

s
s2+1

])

=

[

cos t sin t
− sin t cos t

]

a rotation matrix (−t radians)

so we have x(t) =

[

cos t sin t
− sin t cos t

]

x(0)
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Example 2: Double integrator

ẋ =

[

0 1
0 0

]

x

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Solution via Laplace transform and matrix exponential 10–8



sI − A =

[

s −1
0 s

]

, so resolvent is

(sI − A)−1 =

[

1
s

1
s2

0 1
s

]

(eigenvalues are 0, 0)

state transition matrix is

Φ(t) = L−1

([

1
s

1
s2

0 1
s

])

=

[

1 t
0 1

]

so we have x(t) =

[

1 t
0 1

]

x(0)
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Characteristic polynomial

X (s) = det(sI − A) is called the characteristic polynomial of A

• X (s) is a polynomial of degree n, with leading (i.e., sn) coefficient one

• roots of X are the eigenvalues of A

• X has real coefficients, so eigenvalues are either real or occur in
conjugate pairs

• there are n eigenvalues (if we count multiplicity as roots of X )
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Eigenvalues of A and poles of resolvent

i, j entry of resolvent can be expressed via Cramer’s rule as

(−1)i+j det ∆ij

det(sI − A)

where ∆ij is sI − A with jth row and ith column deleted

• det ∆ij is a polynomial of degree less than n, so i, j entry of resolvent
has form fij(s)/X (s) where fij is polynomial with degree less than n

• poles of entries of resolvent must be eigenvalues of A

• but not all eigenvalues of A show up as poles of each entry

(when there are cancellations between det ∆ij and X (s))
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Matrix exponential

(I − C)−1 = I + C + C2 + C3 + · · · (if series converges)

• series expansion of resolvent:

(sI − A)−1 = (1/s)(I − A/s)−1 =
I

s
+

A

s2
+

A2

s3
+ · · ·

(valid for |s| large enough) so

Φ(t) = L−1
(

(sI − A)−1
)

= I + tA +
(tA)2

2!
+ · · ·
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• looks like ordinary power series

eat = 1 + ta +
(ta)2

2!
+ · · ·

with square matrices instead of scalars . . .

• define matrix exponential as

eM = I + M +
M2

2!
+ · · ·

for M ∈ Rn×n (which in fact converges for all M)

• with this definition, state-transition matrix is

Φ(t) = L−1
(

(sI − A)−1
)

= etA
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Matrix exponential solution of autonomous LDS

solution of ẋ = Ax, with A ∈ Rn×n and constant, is

x(t) = etAx(0)

generalizes scalar case: solution of ẋ = ax, with a ∈ R and constant, is

x(t) = etax(0)
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• matrix exponential is meant to look like scalar exponential

• some things you’d guess hold for the matrix exponential (by analogy
with the scalar exponential) do in fact hold

• but many things you’d guess are wrong

example: you might guess that eA+B = eAeB, but it’s false (in general)

A =

[

0 1
−1 0

]

, B =

[

0 1
0 0

]

eA =

[

0.54 0.84
−0.84 0.54

]

, eB =

[

1 1
0 1

]

eA+B =

[

0.16 1.40
−0.70 0.16

]

6= eAeB =

[

0.54 1.38
−0.84 −0.30

]
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however, we do have eA+B = eAeB if AB = BA, i.e., A and B commute

thus for t, s ∈ R, e(tA+sA) = etAesA

with s = −t we get

etAe−tA = etA−tA = e0 = I

so etA is nonsingular, with inverse

(

etA
)−1

= e−tA
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example: let’s find eA, where A =

[

0 1
0 0

]

we already found

etA = L−1(sI − A)−1 =

[

1 t
0 1

]

so, plugging in t = 1, we get eA =

[

1 1
0 1

]

let’s check power series:

eA = I + A +
A2

2!
+ · · · = I + A

since A2 = A3 = · · · = 0
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Time transfer property

for ẋ = Ax we know

x(t) = Φ(t)x(0) = etAx(0)

interpretation: the matrix etA propagates initial condition into state at
time t

more generally we have, for any t and τ ,

x(τ + t) = etAx(τ)

(to see this, apply result above to z(t) = x(t + τ))

interpretation: the matrix etA propagates state t seconds forward in time
(backward if t < 0)
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• recall first order (forward Euler) approximate state update, for small t:

x(τ + t) ≈ x(τ) + tẋ(τ) = (I + tA)x(τ)

• exact solution is

x(τ + t) = etAx(τ) = (I + tA + (tA)2/2! + · · ·)x(τ)

• forward Euler is just first two terms in series
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Sampling a continuous-time system

suppose ẋ = Ax

sample x at times t1 ≤ t2 ≤ · · ·: define z(k) = x(tk)

then z(k + 1) = e(tk+1−tk)Az(k)

for uniform sampling tk+1 − tk = h, so

z(k + 1) = ehAz(k),

a discrete-time LDS (called discretized version of continuous-time system)
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Piecewise constant system

consider time-varying LDS ẋ = A(t)x, with

A(t) =







A0 0 ≤ t < t1
A1 t1 ≤ t < t2
...

where 0 < t1 < t2 < · · · (sometimes called jump linear system)

for t ∈ [ti, ti+1] we have

x(t) = e(t−ti)Ai · · · e(t3−t2)A2e(t2−t1)A1et1A0x(0)

(matrix on righthand side is called state transition matrix for system, and
denoted Φ(t))
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Qualitative behavior of x(t)

suppose ẋ = Ax, x(t) ∈ Rn

then x(t) = etAx(0); X(s) = (sI − A)−1x(0)

ith component Xi(s) has form

Xi(s) =
ai(s)

X (s)

where ai is a polynomial of degree < n

thus the poles of Xi are all eigenvalues of A (but not necessarily the other
way around)
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first assume eigenvalues λi are distinct, so Xi(s) cannot have repeated
poles

then xi(t) has form

xi(t) =

n
∑

j=1

βije
λjt

where βij depend on x(0) (linearly)

eigenvalues determine (possible) qualitative behavior of x:

• eigenvalues give exponents that can occur in exponentials

• real eigenvalue λ corresponds to an exponentially decaying or growing
term eλt in solution

• complex eigenvalue λ = σ + jω corresponds to decaying or growing
sinusoidal term eσt cos(ωt + φ) in solution
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• ℜλj gives exponential growth rate (if > 0), or exponential decay rate (if
< 0) of term

• ℑλj gives frequency of oscillatory term (if 6= 0)

ℜs

ℑseigenvalues
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now suppose A has repeated eigenvalues, so Xi can have repeated poles

express eigenvalues as λ1, . . . , λr (distinct) with multiplicities n1, . . . , nr,
respectively (n1 + · · · + nr = n)

then xi(t) has form

xi(t) =

r
∑

j=1

pij(t)e
λjt

where pij(t) is a polynomial of degree < nj (that depends linearly on x(0))
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Stability

we say system ẋ = Ax is stable if etA → 0 as t → ∞

meaning:

• state x(t) converges to 0, as t → ∞, no matter what x(0) is

• all trajectories of ẋ = Ax converge to 0 as t → ∞

fact: ẋ = Ax is stable if and only if all eigenvalues of A have negative real
part:

ℜλi < 0, i = 1, . . . , n
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the ‘if’ part is clear since

lim
t→∞

p(t)eλt = 0

for any polynomial, if ℜλ < 0

we’ll see the ‘only if’ part next lecture

more generally, maxi ℜλi determines the maximum asymptotic logarithmic
growth rate of x(t) (or decay, if < 0)
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