EE263 Autumn 2007-08 Stephen Boyd

Lecture 10

Solution via Laplace transform and matrix
exponential

e Laplace transform

e solving x = Ax via Laplace transform
e state transition matrix

e matrix exponential

e qualitative behavior and stability
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Laplace transform of matrix valued function

suppose z : R — RP*4

Laplace transform: Z = L(z), where Z : D C C — CP*? is defined by

Z(s) = /0 TSt dt

e integral of matrix is done term-by-term
e convention: upper case denotes Laplace transform
e D is the domain or region of convergence of Z

e D includes at least {s | Rs > a}, where a satisfies |z;;(t)| < ae® for
t>0,:=1,....,p,9=1,...,q
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Derivative property

L(3)(s) = /O T emsti(e) dt

Solution via Laplace transform and matrix exponential 103



Laplace transform solution of + = Ax

consider continuous-time time-invariant (TIl) LDS
T = Az

for t > 0, where z(t) € R"

e take Laplace transform: sX(s) — z(0) = AX(s)

e rewrite as (sI — A)X(s) = z(0)

e hence X(s) = (sI — A)~1z(0)

e take inverse transform

z(t) =L ((sI — A)~") z(0)

Solution via Laplace transform and matrix exponential 104



Resolvent and state transition matrix

o (sI — A)~!is called the resolvent of A

e resolvent defined for s € C except eigenvalues of A, i.e., s such that

det(sl — A) =0

o O(t) =L ((sI — A)~1) is called the state-transition matrix; it maps
the initial state to the state at time ¢:

(in particular, state x(t) is a linear function of initial state x(0))
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Example 1: Harmonic oscillator
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Solution via Laplace transform and ma

trix exponential
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s —1

SI_A:[l .

], so resolvent is

S 1
_ 2 2
(sI—A) 1:[5_1?1 s;—l]
s2+41 s2+41

(eigenvalues are +7)

state transition matrix is

S 1 .
_ -1 211 5241 _ cost sint
®t) =L ([ —1 5 ]) [ —sint cost

s24+1 s241

a rotation matrix (—t radians)

cost sint
—sint cost ] :13(0)

so we have z(t) = [
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Example 2: Double integrator
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s —1

SI—A:[O .

], so resolvent is

(s —A)~' = [
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(eigenvalues are 0, 0)
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s0 we have z(t) = [ o ] 2(0)
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Characteristic polynomial

X(s) = det(sI — A) is called the characteristic polynomial of A

e X (s) is a polynomial of degree n, with leading (i.e., s™) coefficient one
e roots of X are the eigenvalues of A

e X has real coefficients, so eigenvalues are either real or occur in
conjugate pairs

e there are n eigenvalues (if we count multiplicity as roots of X)
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Eigenvalues of A and poles of resolvent

1,7 entry of resolvent can be expressed via Cramer’s rule as

det Aij
det(sl — A)

(_1)i+j
where A;; is sI — A with jth row and ith column deleted

o det A;; is a polynomial of degree less than n, so ¢, j entry of resolvent
has form f;,(s)/X(s) where f;; is polynomial with degree less than n

e poles of entries of resolvent must be eigenvalues of A

e but not all eigenvalues of A show up as poles of each entry
(when there are cancellations between det A;; and X (s))
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Matrix exponential

(I-C)"'=I1+4+C+C?+ >+ --- (if series converges)

e series expansion of resolvent:

(sT—A) L= ()T —Afs) =L AL AL

s 82 g3

(valid for |s| large enough) so

Q(t) =L ((sI—A)7) =T+tA+ (t;)Q + -

Solution via Laplace transform and matrix exponential 10-12



e looks like ordinary power series

t 2
eatzl—l—ta_'_%_'_...

with square matrices instead of scalars . . .

e define matrix exponential as

2

M

for M € R™™ " (which in fact converges for all M)

e with this definition, state-transition matrix is

O(t) =L ((s] —A)71) =€

Solution via Laplace transform and matrix exponential 10-13



Matrix exponential solution of autonomous LDS

Ran

solution of £ = Az, with A &€ and constant, is

x(t) = e*z(0)

generalizes scalar case: solution of £ = ax, with a € R and constant, is

z(t) = e“x(0)

Solution via Laplace transform and matrix exponential 10-14



e matrix exponential is meant to look like scalar exponential

e some things you'd guess hold for the matrix exponential (by analogy
with the scalar exponential) do in fact hold

e but many things you’d guess are wrong

example: you might guess that ™5 = e/eP, but it's false (in general)

0 1 0 1
i ER I )
A_[ 054 084 s_[11
—0.84 0.54 |’ 0 1
arp | 016 1.40 A [ 054 1.38
c _[—0.70 016 | 7¢¢ T | —0.84 —0.30
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however, we do have eAT8 = ¢4e¢B if AB = BA, i.e., A and B commute

thus for t, s € R, e(tA+s4) — ctdesA

with s = —t we get
ptAp—tA _ JtA—tA _ 0 _ T

so e'4 is nonsingular, with inverse

tANTL . —tA
() =e

Solution via Laplace transform and matrix exponential 10-16



example: let’s find e, where A = [ 8 (1) ]
we already found

tA _ p—1p.7 a1 _ | 1 1
et =L (s] —A) _[O 1]

so, plugging in t = 1, we get e = [ (1) i ]

let's check power series:

2

since A2=A43=...=0

Solution via Laplace transform and matrix exponential 10-17



Time transfer property

for £ = Ax we know

interpretation: the matrix e’ propagates initial condition into state at
time ¢

more generally we have, for any t and 7,
r(T +t) = ea(7)

(to see this, apply result above to z(t) = z(t + 7))

interpretation: the matrix e’ propagates state ¢ seconds forward in time
(backward if ¢ < 0)
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e recall first order (forward Euler) approximate state update, for small ¢:

r(t+1t)~x(r)+ti(r) =1 +tA)x ()

e exact solution is

(T +1) = GtAZU(T) = (I +tA+ (tA)2/2! + - )z(7)

e forward Euler is just first two terms in series

Solution via Laplace transform and matrix exponential 10-19



Sampling a continuous-time system

suppose T = Ax
sample x at times t; <ty < ---: define z(k) = x(tx)

then z(k + 1) = elter1=t) Az (k)

for uniform sampling tx.1 —tx = h, so
2(k+1) = e"2(k),

a discrete-time LDS (called discretized version of continuous-time system)

Solution via Laplace transform and matrix exponential 10-20



Piecewise constant system

consider time-varying LDS & = A(t)z, with
Ay 0<t <ty
A(t)z A t1 <t<ty
where 0 < t; < tg < --- (sometimes called jump linear system)
for t € [t;,t;11] we have

.T(t) — e(t_ti)Ai o 6<t3_t2)A2€(t2_t1)A1thAOZU(O)

(matrix on righthand side is called state transition matrix for system, and

denoted (1))

Solution via Laplace transform and matrix exponential
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Qualitative behavior of x (%)

suppose © = Az, z(t) € R"
then z(t) = e'2(0); X(s) = (sI — A)~'x(0)

ith component X;(s) has form

where a; is a polynomial of degree < n

thus the poles of X; are all eigenvalues of A (but not necessarily the other

way around)

Solution via Laplace transform and matrix exponential
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first assume eigenvalues \; are distinct, so X;(s) cannot have repeated
poles

then z;(¢) has form
zi(t) = Zﬁije)\jt
j=1

where 3;; depend on z(0) (linearly)

eigenvalues determine (possible) qualitative behavior of z:

e cigenvalues give exponents that can occur in exponentials

e real eigenvalue A corresponds to an exponentially decaying or growing
term e*' in solution

e complex eigenvalue A = 0 4+ jw corresponds to decaying or growing
sinusoidal term e?* cos(wt + ¢) in solution

Solution via Laplace transform and matrix exponential 10-23



e )\, gives exponential growth rate (if > 0), or exponential decay rate (if
< 0) of term

o 3\, gives frequency of oscillatory term (if # 0)

eigenvalues s
F X
X
Rs
X
X

Solution via Laplace transform and matrix exponential 10-24



now suppose A has repeated eigenvalues, so X; can have repeated poles

express eigenvalues as A1, ..., A\, (distinct) with multiplicities nq, ..., n,,
respectively (ny + -+ n, =n)

then x;(¢) has form
zi(t) = ) pij(t)e™’
j=1

where p;;(t) is a polynomial of degree < n; (that depends linearly on x(0))

Solution via Laplace transform and matrix exponential 10-25



Stability

we say system @ = Az is stable if e?* — 0 as t — o0

meaning;:
e state x(t) converges to 0, as t — 0o, no matter what z(0) is

e all trajectories of & = Ax converge to 0 as t — o0

fact: © = Ax is stable if and only if all eigenvalues of A have negative real
part:
KN, <0, 2=1,...,n

Solution via Laplace transform and matrix exponential 10-26



the ‘if’ part is clear since

lim p(t)eM =0

t— 00

for any polynomial, if ®A <0

we'll see the ‘only if" part next lecture

more generally, max; *\; determines the maximum asymptotic logarithmic
growth rate of x(t) (or decay, if < 0)

Solution via Laplace transform and matrix exponential 10-27



