
ctms.engin.umich.edu

Control Tutorials for MATLAB and
Simulink

15~18분

Introduction: PID Controller Design

In this tutorial we will introduce a simple, yet versatile, feedback

compensator structure: the Proportional-Integral-Derivative (PID)

controller. The PID controller is widely employed because it is very

understandable and because it is quite effective. One attraction of

the PID controller is that all engineers understand conceptually

differentiation and integration, so they can implement the control

system even without a deep understanding of control theory.

Further, even though the compensator is simple, it is quite

sophisticated in that it captures the history of the system (through

integration) and anticipates the future behavior of the system

Control Tutorials for MATLAB and Simulink - Introduction: PID Controller Design about:reader?url=https%3A%2F%2Fctms.engin.umich.edu%2FCTMS%2Findex.php%3Fex...

1 / 26 2024-04-30 오전 9:22

(through differentiation). We will discuss the effect of each of the

PID parameters on the dynamics of a closed-loop system and will

demonstrate how to use a PID controller to improve a system's

performance.

Key MATLAB commands used in this tutorial are: tf , step , pid ,

feedback , pidtune

Contents

PID Overview

The Characteristics of the P, I, and D Terms

Example Problem

Open-Loop Step Response

Proportional Control

Proportional-Derivative Control

Proportional-Integral Control

Proportional-Integral-Derivative Control

General Tips for Designing a PID Controller

Automatic PID Tuning

Control Tutorials for MATLAB and Simulink - Introduction: PID Controller Design about:reader?url=https%3A%2F%2Fctms.engin.umich.edu%2FCTMS%2Findex.php%3Fex...

2 / 26 2024-04-30 오전 9:22

PID Overview

In this tutorial, we will consider the following unity-feedback system:

The output of a PID controller, which is equal to the control input to

the plant, is calculated in the time domain from the feedback error

as follows:

(1)

First, let's take a look at how the PID controller works in a closed-

loop system using the schematic shown above. The variable ()

represents the tracking error, the difference between the desired

output () and the actual output (). This error signal () is fed to the

PID controller, and the controller computes both the derivative and

the integral of this error signal with respect to time. The control

signal () to the plant is equal to the proportional gain () times the

Control Tutorials for MATLAB and Simulink - Introduction: PID Controller Design about:reader?url=https%3A%2F%2Fctms.engin.umich.edu%2FCTMS%2Findex.php%3Fex...

3 / 26 2024-04-30 오전 9:22

magnitude of the error plus the integral gain () times the integral

of the error plus the derivative gain () times the derivative of the

error.

This control signal () is fed to the plant and the new output () is

obtained. The new output () is then fed back and compared to the

reference to find the new error signal (). The controller takes this

new error signal and computes an update of the control input. This

process continues while the controller is in effect.

The transfer function of a PID controller is found by taking the

Laplace transform of Equation (1).

(2)

where = proportional gain, = integral gain, and = derivative

gain.

We can define a PID controller in MATLAB using a transfer function

model directly, for example:

Kp = 1;

Ki = 1;

Kd = 1;

Control Tutorials for MATLAB and Simulink - Introduction: PID Controller Design about:reader?url=https%3A%2F%2Fctms.engin.umich.edu%2FCTMS%2Findex.php%3Fex...

4 / 26 2024-04-30 오전 9:22

s = tf('s');

C = Kp + Ki/s + Kd*s

C =

 s^2 + s + 1

 s

Continuous-time transfer function.

Alternatively, we may use MATLAB's pid object to generate an

equivalent continuous-time controller as follows:

C = pid(Kp,Ki,Kd)

C =

 1

 Kp + Ki * --- + Kd * s

 s

 with Kp = 1, Ki = 1, Kd = 1

Control Tutorials for MATLAB and Simulink - Introduction: PID Controller Design about:reader?url=https%3A%2F%2Fctms.engin.umich.edu%2FCTMS%2Findex.php%3Fex...

5 / 26 2024-04-30 오전 9:22

Continuous-time PID controller in parallel form.

Let's convert the pid object to a transfer function to verify that it

yields the same result as above:

tf(C)

ans =

 s^2 + s + 1

 s

Continuous-time transfer function.

The Characteristics of the P, I, and D Terms

Increasing the proportional gain () has the effect of proportionally

increasing the control signal for the same level of error. The fact

that the controller will "push" harder for a given level of error tends

to cause the closed-loop system to react more quickly, but also to

Control Tutorials for MATLAB and Simulink - Introduction: PID Controller Design about:reader?url=https%3A%2F%2Fctms.engin.umich.edu%2FCTMS%2Findex.php%3Fex...

6 / 26 2024-04-30 오전 9:22

overshoot more. Another effect of increasing is that it tends to

reduce, but not eliminate, the steady-state error.

The addition of a derivative term to the controller () adds the

ability of the controller to "anticipate" error. With simple proportional

control, if is fixed, the only way that the control will increase is if

the error increases. With derivative control, the control signal can

become large if the error begins sloping upward, even while the

magnitude of the error is still relatively small. This anticipation tends

to add damping to the system, thereby decreasing overshoot. The

addition of a derivative term, however, has no effect on the steady-

state error.

The addition of an integral term to the controller (

) tends to help reduce steady-state error. If there is a persistent,

steady error, the integrator builds and builds, thereby increasing the

control signal and driving the error down. A drawback of the integral

term, however, is that it can make the system more sluggish (and

oscillatory) since when the error signal changes sign, it may take a

while for the integrator to "unwind."

The general effects of each controller parameter (, ,) on a

closed-loop system are summarized in the table below. Note, these

Control Tutorials for MATLAB and Simulink - Introduction: PID Controller Design about:reader?url=https%3A%2F%2Fctms.engin.umich.edu%2FCTMS%2Findex.php%3Fex...

7 / 26 2024-04-30 오전 9:22

guidelines hold in many cases, but not all. If you truly want to know

the effect of tuning the individual gains, you will have to do more

analysis, or will have to perform testing on the actual system.

CL

RESPONSE

RISE

TIME

OVERSHOOT SETTLING

TIME

S-S

ERROR

Kp Decrease Increase Small

Change

Decrease

Ki Decrease Increase Increase Decrease

Kd Small

Change

Decrease Decrease No

Change

Example Problem

Suppose we have a simple mass-spring-damper system.

Control Tutorials for MATLAB and Simulink - Introduction: PID Controller Design about:reader?url=https%3A%2F%2Fctms.engin.umich.edu%2FCTMS%2Findex.php%3Fex...

8 / 26 2024-04-30 오전 9:22

The governing equation of this system is

(3)

Taking the Laplace transform of the governing equation, we get

(4)

The transfer function between the input force and the output

displacement then becomes

(5)

Let

 m = 1 kg

 b = 10 N s/m

 k = 20 N/m

 F = 1 N

Substituting these values into the above transfer function

(6)

The goal of this problem is to show how each of the terms, , ,

and , contributes to obtaining the common goals of:

Fast rise time

Control Tutorials for MATLAB and Simulink - Introduction: PID Controller Design about:reader?url=https%3A%2F%2Fctms.engin.umich.edu%2FCTMS%2Findex.php%3Fex...

9 / 26 2024-04-30 오전 9:22

Minimal overshoot

Zero steady-state error

Open-Loop Step Response

Let's first view the open-loop step response. Create a new m-file

and run the following code:

s = tf('s');

P = 1/(s^2 + 10*s + 20);

step(P)

Control Tutorials for MATLAB and Simulink - Introduction: PID Controller Design about:reader?url=https%3A%2F%2Fctms.engin.umich.edu%2FCTMS%2Findex.php%3Fex...

10 / 26 2024-04-30 오전 9:22

The DC gain of the plant transfer function is 1/20, so 0.05 is the

final value of the output to a unit step input. This corresponds to a

steady-state error of 0.95, which is quite large. Furthermore, the

rise time is about one second, and the settling time is about 1.5

seconds. Let's design a controller that will reduce the rise time,

reduce the settling time, and eliminate the steady-state error.

Proportional Control

From the table shown above, we see that the proportional controller

(

) reduces the rise time, increases the overshoot, and reduces the

steady-state error.

The closed-loop transfer function of our unity-feedback system with

a proportional controller is the following, where is our output

(equals) and our reference is the input:

(7)

Let the proportional gain (

Control Tutorials for MATLAB and Simulink - Introduction: PID Controller Design about:reader?url=https%3A%2F%2Fctms.engin.umich.edu%2FCTMS%2Findex.php%3Fex...

11 / 26 2024-04-30 오전 9:22

) equal 300 and change the m-file to the following:

Kp = 300;

C = pid(Kp)

T = feedback(C*P,1)

t = 0:0.01:2;

step(T,t)

C =

 Kp = 300

P-only controller.

T =

 300

 s^2 + 10 s + 320

Continuous-time transfer function.

Control Tutorials for MATLAB and Simulink - Introduction: PID Controller Design about:reader?url=https%3A%2F%2Fctms.engin.umich.edu%2FCTMS%2Findex.php%3Fex...

12 / 26 2024-04-30 오전 9:22

The above plot shows that the proportional controller reduced both

the rise time and the steady-state error, increased the overshoot,

and decreased the settling time by a small amount.

Proportional-Derivative Control

Now, let's take a look at PD control. From the table shown above,

Control Tutorials for MATLAB and Simulink - Introduction: PID Controller Design about:reader?url=https%3A%2F%2Fctms.engin.umich.edu%2FCTMS%2Findex.php%3Fex...

13 / 26 2024-04-30 오전 9:22

we see that the addition of derivative control (

) tends to reduce both the overshoot and the settling time. The

closed-loop transfer function of the given system with a PD

controller is:

(8)

Let equal 300 as before and let equal 10. Enter the following

commands into an m-file and run it in the MATLAB command

window.

Kp = 300;

Kd = 10;

C = pid(Kp,0,Kd)

T = feedback(C*P,1)

t = 0:0.01:2;

step(T,t)

C =

 Kp + Kd * s

Control Tutorials for MATLAB and Simulink - Introduction: PID Controller Design about:reader?url=https%3A%2F%2Fctms.engin.umich.edu%2FCTMS%2Findex.php%3Fex...

14 / 26 2024-04-30 오전 9:22

 with Kp = 300, Kd = 10

Continuous-time PD controller in parallel form.

T =

 10 s + 300

 s^2 + 20 s + 320

Continuous-time transfer function.

Control Tutorials for MATLAB and Simulink - Introduction: PID Controller Design about:reader?url=https%3A%2F%2Fctms.engin.umich.edu%2FCTMS%2Findex.php%3Fex...

15 / 26 2024-04-30 오전 9:22

This plot shows that the addition of the derivative term reduced

both the overshoot and the settling time, and had a negligible effect

on the rise time and the steady-state error.

Proportional-Integral Control

Before proceeding to PID control, let's investigate PI control. From

the table, we see that the addition of integral control (

) tends to decrease the rise time, increase both the overshoot and

the settling time, and reduces the steady-state error. For the given

system, the closed-loop transfer function with a PI controller is:

(9)

Let's reduce to 30, and let equal 70. Create a new m-file and

enter the following commands.

Control Tutorials for MATLAB and Simulink - Introduction: PID Controller Design about:reader?url=https%3A%2F%2Fctms.engin.umich.edu%2FCTMS%2Findex.php%3Fex...

16 / 26 2024-04-30 오전 9:22

Kp = 30;

Ki = 70;

C = pid(Kp,Ki)

T = feedback(C*P,1)

t = 0:0.01:2;

step(T,t)

C =

 1

 Kp + Ki * ---

 s

 with Kp = 30, Ki = 70

Continuous-time PI controller in parallel form.

T =

 30 s + 70

Control Tutorials for MATLAB and Simulink - Introduction: PID Controller Design about:reader?url=https%3A%2F%2Fctms.engin.umich.edu%2FCTMS%2Findex.php%3Fex...

17 / 26 2024-04-30 오전 9:22

 s^3 + 10 s^2 + 50 s + 70

Continuous-time transfer function.

Run this m-file in the MATLAB command window and you should

generate the above plot. We have reduced the proportional gain (

Control Tutorials for MATLAB and Simulink - Introduction: PID Controller Design about:reader?url=https%3A%2F%2Fctms.engin.umich.edu%2FCTMS%2Findex.php%3Fex...

18 / 26 2024-04-30 오전 9:22

) because the integral controller also reduces the rise time and

increases the overshoot as the proportional controller does (double

effect). The above response shows that the integral controller

eliminated the steady-state error in this case.

Proportional-Integral-Derivative Control

Now, let's examine PID control. The closed-loop transfer function of

the given system with a PID controller is:

(10)

After several iterations of tuning, the gains = 350, = 300, and

 = 50 provided the desired response. To confirm, enter the

following commands to an m-file and run it in the command window.

You should obtain the following step response.

Kp = 350;

Ki = 300;

Kd = 50;

C = pid(Kp,Ki,Kd)

T = feedback(C*P,1);

t = 0:0.01:2;

Control Tutorials for MATLAB and Simulink - Introduction: PID Controller Design about:reader?url=https%3A%2F%2Fctms.engin.umich.edu%2FCTMS%2Findex.php%3Fex...

19 / 26 2024-04-30 오전 9:22

step(T,t)

C =

 1

 Kp + Ki * --- + Kd * s

 s

 with Kp = 350, Ki = 300, Kd = 50

Continuous-time PID controller in parallel form.

Control Tutorials for MATLAB and Simulink - Introduction: PID Controller Design about:reader?url=https%3A%2F%2Fctms.engin.umich.edu%2FCTMS%2Findex.php%3Fex...

20 / 26 2024-04-30 오전 9:22

Now, we have designed a closed-loop system with no overshoot,

fast rise time, and no steady-state error.

General Tips for Designing a PID Controller

When you are designing a PID controller for a given system, follow

the steps shown below to obtain a desired response.

Lastly, please keep in mind that you do not need to implement all

three controllers (proportional, derivative, and integral) into a single

system, if not necessary. For example, if a PI controller meets the

given requirements (like the above example), then you don't need

to implement a derivative controller on the system. Keep the

controller as simple as possible.

An example of tuning a PI controller on an actual physical system

can be found at the following link. This example also begins to

illustrate some challenges of implementing control, including:

control saturation, integrator wind-up, and noise amplification.

Control Tutorials for MATLAB and Simulink - Introduction: PID Controller Design about:reader?url=https%3A%2F%2Fctms.engin.umich.edu%2FCTMS%2Findex.php%3Fex...

21 / 26 2024-04-30 오전 9:22

Automatic PID Tuning

MATLAB provides tools for automatically choosing optimal PID

gains which makes the trial and error process described above

unnecessary. You can access the tuning algorithm directly using

pidtune or through a nice graphical user interface (GUI) using

pidTuner.

The MATLAB automated tuning algorithm chooses PID gains to

balance performance (response time, bandwidth) and robustness

(stability margins). By default, the algorithm designs for a 60-

degree phase margin.

Let's explore these automated tools by first generating a

proportional controller for the mass-spring-damper system by

entering the command shown below. In the shown syntax, P is the

previously generated plant model, and 'p' specifies that the tuner

employ a proportional controller.

 pidTuner(P,'p')

The pidTuner GUI window, like that shown below, should appear.

Control Tutorials for MATLAB and Simulink - Introduction: PID Controller Design about:reader?url=https%3A%2F%2Fctms.engin.umich.edu%2FCTMS%2Findex.php%3Fex...

22 / 26 2024-04-30 오전 9:22

Notice that the step response shown is slower than the proportional

controller we designed by hand. Now click on the Show

Parameters button on the top right. As expected, the proportional

gain, , is smaller than the one we employed, = 94.86 < 300.

We can now interactively tune the controller parameters and

immediately see the resulting response in the GUI window. Try

dragging the Response Time slider to the right to 0.14 s, as shown

in the figure below. This causes the response to indeed speed up,

and we can see is now closer to the manually chosen value. We

can also see other performance and robustness parameters for the

system. Note that before we adjusted the slider, the target phase

margin was 60 degrees. This is the default for the pidTuner and

generally provides a good balance between robustness and

Control Tutorials for MATLAB and Simulink - Introduction: PID Controller Design about:reader?url=https%3A%2F%2Fctms.engin.umich.edu%2FCTMS%2Findex.php%3Fex...

23 / 26 2024-04-30 오전 9:22

performance.

Now let's try designing a PID controller for our system. By

specifying the previously designed or (baseline) controller, C, as the

second parameter, pidTuner will design another PID controller

(instead of P or PI) and will compare the response of the system

with the automated controller with that of the baseline.

 pidTuner(P,C)

We see in the output window that the automated controller

responds slower and exhibits more overshoot than the baseline.

Control Tutorials for MATLAB and Simulink - Introduction: PID Controller Design about:reader?url=https%3A%2F%2Fctms.engin.umich.edu%2FCTMS%2Findex.php%3Fex...

24 / 26 2024-04-30 오전 9:22

Now choose the Domain: Frequency option from the toolstrip,

which reveals frequency domain tuning parameters.

Now type in 32 rad/s for Bandwidth and 90 deg for Phase

Margin, to generate a controller similar in performance to the

baseline. Keep in mind that a higher closed-loop bandwidth results

in a faster rise time, and a larger phase margin reduces the

overshoot and improves the system stability.

Finally, we note that we can generate the same controller using the

command line tool pidtune instead of the pidTuner GUI employing

the following syntax.

Control Tutorials for MATLAB and Simulink - Introduction: PID Controller Design about:reader?url=https%3A%2F%2Fctms.engin.umich.edu%2FCTMS%2Findex.php%3Fex...

25 / 26 2024-04-30 오전 9:22

opts = pidtuneOptions('CrossoverFrequency',32,'PhaseMargin',90);

[C, info] = pidtune(P, 'pid', opts)

C =

 1

 Kp + Ki * --- + Kd * s

 s

 with Kp = 320, Ki = 796, Kd = 32.2

Continuous-time PID controller in parallel form.

info =

 struct with fields:

 Stable: 1

 CrossoverFrequency: 32

 PhaseMargin: 90

Control Tutorials for MATLAB and Simulink - Introduction: PID Controller Design about:reader?url=https%3A%2F%2Fctms.engin.umich.edu%2FCTMS%2Findex.php%3Fex...

26 / 26 2024-04-30 오전 9:22

