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Steady-State Error For Non-Unity Feedback
Systems (H(s) 6= 1)

A. Overview

For unity feedback systems with H(s) = 1, the output of the summing junction in the normal single-loop
feedback configuration is the difference between the reference input R(s) and the output C(s). Assuming
that the reference input is the desired value of the output, then the output of the summing junction is the
system error E(s). The expression for the steady-state error, ess = limt→∞ [e(t)] is easily derived for the unity
feedback case; this development is shown on the web page http://ece.gmu.edu/˜gbeale/ece 421/ess 01.html.

When the system does not have unity feedback, that is, H(s) 6= 1, then the output of the summing junction
is not the difference between the reference input and the actual output. However, we will still define the error
as E(s) = R(s)− C(s). Unfortunately, that signal does not appear in the non-unity feedback block diagram,
shown in the top diagram of Fig. 1. The signal E(s) is shown in the second diagram in the figure.

Two methods will be used to derive the expression for steady-state error for the non-unity feedback case.
The first method will proceed directly from the second block diagram in the figure. The second method will use
block diagram manipulation from the top diagram in the figure to convert the system into an equivalent unity
feedback system. We will make the same assumptions on the types of input signals that will be considered
that were made for unity feedback systems, namely that R(s) = A/sq.

B. Method 1

The system is described by the top diagram in Fig. 1. The forward transfer function G(s) is given by

G(s) =
KNg(s)
Dg(s)

=
KxNg1(s)
sNDg1(s)

,
Ng1(0) = 1
Dg1(0) = 1

(1)

where N is the number of open-loop poles in G(s) that occur at s = 0. The feedback transfer function H(s)
is given by

H(s) =
KFBNh(s)

Dh(s)
=

KhNh1(s)
Dh1(s)

,
Nh1(0) = 1
Dh1(0) = 1

(2)

The feedback block H(s) is assumed to have no poles or zeros at the origin. The final forms shown for both
G(s) and H(s) are the time constant form, so the only terms that will impact the steady-state error will be
the gains Kx and Kh and the N poles of G(s) at the origin.

As shown in the second diagram in Fig. 1, the error signal is given by E(s) = R(s)−C(s), which becomes

E(s) = R(s)− TCL(s)R(s) =
[
1− G(s)

1 + G(s)H(s)

]
R(s) =

[
1 + G(s)H(s)−G(s)

1 + G(s)H(s)

]
R(s) (3)

Assuming that the closed-loop system is stable, the steady-state error can be obtained by applying the Final
Value Theorem to E(s). This is

ess = lim
t→∞ [e(t)] = lim

s→0
[sE(s)] = lim

s→0

{
s

[
1 + G(s)H(s)−G(s)

1 + G(s)H(s)

]
R(s)

}
(4)

With the reference input restricted to the class of signals represented by R(s) = A/sq, the expression for ess

can be written as

ess = A · lim
s→0

{
s(1−q)

[
1 + G(s)H(s)−G(s)

1 + G(s)H(s)

]}
(5)
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If we substitute the time constant forms for G(s) and H(s) from (1) and (2) into (5), we get the following
results.

ess = A · lim
s→0



s(1−q)


1 + KxNg1(s)

sNDg1(s)
· KhNh1(s)

Dh1(s) − KxNg1(s)
sNDg1(s)

1 + KxNg1(s)
sNDg1(s)

KhNh1(s)
Dh1(s)






 = A · lim

s→0

{
s(1−q)

[
1 + KxKh

sN − Kx

sN

1 + KxKh

sN

]}
(6)

where the last expression makes use of the fact that Ng1(0) = Dg1(0) = Nh1(0) = Dh1(0) = 1. Multiplying
numerator and denominator of (6) by sN , we get

ess = A · lim
s→0

{
s(1−q)

[
sN + KxKh −Kx

sN + KxKh

]}
= A · lim

s→0

[
s(N+1−q)

sN + KxKh
+

Kx (Kh − 1) s(1−q)

sN + KxKh

]
(7)

Equation (7) is the general expression for steady-state error with non-unity feedback.
Clearly, if Kh = lims→0 [H(s)] = 1, the expression for ess in (7) is identical to the expression for the unity

feedback case. Thus, the non-unity feedback configuration is equivalent—from the standpoint of steady-state
error—to the unity feedback configuration if lims→0 [H(s)] = 1.

If the reference input is a step input, q = 1. If N ≥ 1, the steady-state error becomes

ess = A · lim
s→0

[
sN + KxKh −Kx

sN + KxKh

]
= A

(
Kh − 1

Kh

)
(8)

so ess = 0 when Kh = 1, as expected. If Kh < 1, the steady-state error is negative, which means that the
output is larger than the input. If Kh = 0, the steady-state error becomes infinity; the feedback loop is broken
in steady-state, G(s) has N integrators, so the output is unbounded for the step input.

If q > 1, the steady-state error is

ess = A · lim
s→0

[
s(N+1−q)

sN + KxKh
+

1
s(q−1)

· Kx (Kh − 1)
sN + KxKh

]
(9)

so ess = ∞ for q > 1 unless Kh = 1, regardless of the value of N. Thus, non-unity feedback systems will
always have infinite steady-state error if the reference input is any signal of higher order than a step function
if Kh 6= 1.

C. Method 2

A simple identity can be used to convert a non-unity feedback system into an equivalent unity feedback
system. This identity is H(s) = H(s) − 1 + 1, so the first diagram in Fig. 1 can be converted into the third
diagram. The inner loop has a feedback block of H(s)− 1, and the outer loop has unity feedback. The error
signal is the output of the left-most summing junction in the third diagram. The inner loop can be reduced
to a single block with transfer function

G1(s) =
G(s)

1 + G(s) [H(s)− 1]
(10)

The equivalent system, shown in the bottom diagram of Fig. 1 has the standard unity feedback configuration,
with G1(s) being the forward transfer function. Once this conversion has been done, the normal unity feedback
equations for steady-state error can be applied directly to G1(s), that is,

ess = A · lim
s→0

[
s(N1+1−q)

sN1 + Kx1

]
(11)

where N1 is the number of poles of G1(s) at the origin and

Kx1 = lim
s→0

[G1(s)] (12)
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Fig. 1. Block diagrams for non-unity feedback steady-state error.


