남는 시간에 tensorflow 2.0을 컴파일에 도전했다. 현실은 실패하여 2.1로 목표 재설정. docker 이미지를 사용하면 쉬운데, avx2를 지원하지 않는 CPU를 사용하여 선택할 수 없다. 직접 컴파일하지 않는 한 사용할 수 없다. 최근 개발 이미지를 찾아보니 cuda 10.1, python3 이었다. nvidia-driver는 여러 버전이 설정 되었는데, host pc 버전으로 구동하나 보다. bazel 버전은 3.0이다.
bazel 버전을 2.1.0에 맞는 0.27로 바꿨다. compile 하면 약 6시간 정도 걸린다. 문제가 몇 개 있었다. 전에 램 12GB로 컴파일을 성공했다. 지금 8GB로 해보니, 10,000번 스텝넘어 동작을 멈추고 실패했다. 램을 사기 애매하여 일단 SWAP을 30GB 만들어 컴파일에 성공했다. 그런데 상당히 느리다. 결국 램 8GB를 구매했다. 그런데도 firefox를 띄우고 컴파일하면 에러난다.
메뉴얼은 host에 CUDA를 설치할 필요 없다고 했다. nvidia-driver를 440 버전으로 업데이트 하면 CUDA 10.2를 기본 설치한다. 이게 뭐가 문제냐면 docker gpu 이미지가 10.2을 지원하지 않아 gpu를 사용할 수 없다. 일단 nvidia docker가 10.1 이미지를 띄우면 cuda 10.0으로 내릴 수 없다. 드라이버도 같이 내려야 하는데, 사용 중이어 수정할 수 없나보다. 실패하여 cuda 10.1 이미지를 사용했다. 그러나 nvidia-driver-440으로 cuda 10.1을 사용할 수 없다. 결국 host pc 드라이버를 438로 내렸다.
tensorflow 1.12 버전은 host pc driver 440으로 잘 구동한다. 왜 9.0은 실행하는데 10.x 버전을 실행하지 못하는지 모르겠다.
3일째 이 미친 짓을 하고 있다. 뭘 위해서 인지 모르겠다. 지금까지 버린 인건비와 전기 요금을 생각하면 PC 1/3대를 구입했다.
결국 다음 조합으로 컴파일에 성공했다.
- ubuntu 18.04
- nvidia-driver 435, cuda 10.1
- docker image: latest-devel-gpu-py3, cuda 10.1, python 3.
컴파일 거의 마지막 단계에 host python 버전 2와 guest python 버전 3 환경 설정값 다름으로 컴파일을 실패했다. 여기를 참조하여 간단하게 tensorRT를 사용하지 않도록 설정했다. 어차피 내 그래픽 카드는 지원하지 않는다. python2 버전 이미지로 해도 될 듯 하다.
ERROR: /tensorflow_src/tensorflow/tensorflow/python/keras/api/BUILD:129:1: Executing genrule //tensorflow/python/keras/api:keras_python_api_gen_compat_v2 failed (Exit 1) Traceback (most recent call last): File "/root/.cache/bazel/_bazel_root/51f904752746bc15a93061eb1cc3b8cc/execroot/org_tensorflow/bazel-out/host/bin/tensorflow/python/keras/api/create_tensorflow.python_api_2_keras_python_api_gen_compat_v2.runfiles/org_tensorflow/tensorflow/python/tools/api/generator/create_python_api.py", line 27, in <module>nvidia.com/compute/cuda/repos/ubuntu1804/x86_64 cuda-npp-10-1 10.1.243-1 [54.9 MB] Get:9 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64 cuda-libraries-10-1 10.1.243-1 [2588 B] Get:10 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64 cuda-nvrtc-dev-10-1 10.1.243-1 [8812 B] from tensorflow.python.tools.api.generator import doc_srcs File "/root/.cache/bazel/_bazel_root/51f904752746bc15a93061eb1cc3b8cc/execroot/org_tensorflow/bazel-out/host/bin/tensorflow/python/keras/api/create_tensorflow.python_api_2_keras_python_api_gen_compat_v2.runfiles/org_tensorflow/tensorflow/python/__init__.py", line 85, in <module> from tensorflow.python.ops.standard_ops import * File "/root/.cache/bazel/_bazel_root/51f904752746bc15a93061eb1cc3b8cc/execroot/org_tensorflow/bazel-out/host/bin/tensorflow/python/keras/api/create_tensorflow.python_api_2_keras_python_api_gen_compat_v2.runfiles/org_tensorflow/tensorflow/python/ops/standard_ops.py", line 117, in <module> from tensorflow.python.compiler.tensorrt import trt_convert as trt File "/root/.cache/bazel/_bazel_root/51f904752746bc15a93061eb1cc3b8cc/execroot/org_tensorflow/bazel-out/host/bin/tensorflow/python/keras/api/create_tensorflow.python_api_2_keras_python_api_gen_compat_v2.runfiles/org_tensorflow/tensorflow/python/compiler/tensorrt/__init__.py", line 22, in <module> from tensorflow.python.compiler.tensorrt import trt_convert as trt File "/root/.cache/bazel/_bazel_root/51f904752746bc15a93061eb1cc3b8cc/execroot/org_tensorflow/bazel-out/host/bin/tensorflow/python/keras/api/create_tensorflow.python_api_2_keras_python_api_gen_compat_v2.runfiles/org_tensorflow/tensorflow/python/compiler/tensorrt/trt_convert.py", line 28, in <module> from tensorflow.compiler.tf2tensorrt import wrap_py_utils File "/root/.cache/bazel/_bazel_root/51f904752746bc15a93061eb1cc3b8cc/execroot/org_tensorflow/bazel-out/host/bin/tensorflow/python/keras/api/create_tensorflow.python_api_2_keras_python_api_gen_compat_v2.runfiles/org_tensorflow/tensorflow/compiler/tf2tensorrt/wrap_py_utils.py", line 28, in <module> _wrap_py_utils = swig_import_helper() File "/root/.cache/bazel/_bazel_root/51f904752746bc15a93061eb1cc3b8cc/execroot/org_tensorflow/bazel-out/host/bin/tensorflow/python/keras/api/create_tensorflow.python_api_2_keras_python_api_gen_compat_v2.runfiles/org_tensorflow/tensorflow/compiler/tf2tensorrt/wrap_py_utils.py", line 24, in swig_import_helper _mod = imp.load_module('_wrap_py_utils', fp, pathname, description) File "/usr/lib/python3.6/imp.py", line 243, in load_module return load_dynamic(name, filename, file) File "/usr/lib/python3.6/imp.py", line 343, in load_dynamic return _load(spec) ImportError: /root/.cache/bazel/_bazel_root/51f904752746bc15a93061eb1cc3b8cc/execroot/org_tensorflow/bazel-out/host/bin/tensorflow/python/keras/api/create_tensorflow.python_api_2_keras_python_api_gen_compat_v2.runfiles/org_tensorflow/tensorflow/compiler/tf2tensorrt/_wrap_py_utils.so: undefined symbol: _ZN15stream_executor14StreamExecutor18EnablePeerAccessToEPS0_ ---------------- Note: The failure of target //tensorflow/python/keras/api:create_tensorflow.python_api_2_keras_python_api_gen_compat_v2 (with exit code 1) may have been caused by the fact that it is a Python 2 program that was built in the host configuration, which uses Python 3. You can change the host configuration (for the entire build) to instead use Python 2 by setting --host_force_python=PY2. If this error started occurring in Bazel 0.27 and later, it may be because the Python toolchain now enforces that targets analyzed as PY2 and PY3 run under a Python 2 and Python 3 interpreter, respectively. See https://github.com/bazelbuild/bazel/issues/7899 for more information. ---------------- Target //tensorflow/tools/pip_package:build_pip_package failed to build Use --verbose_failures to see the command lines of failed build steps. INFO: Elapsed time: 26069.299s, Critical Path: 545.35s INFO: 26668 processes: 26668 local. FAILED: Build did NOT complete successfully
드디어 2.1 컴파일을 성공했다. 한 번 컴파일 끝내기 위해 7시간씩 썼다. 총 5번은 실패했고 6번째 성공했다. 업데이트 전 제대로 실행됨을 확인했다. update 하고 실행하니 또 에러 뜬다. cuda 10.2 문제임을 여기에서 확인했다. 다시 버전을 내렸다.
2020-04-28 11:13:07.200201: E tensorflow/stream_executor/cuda/cuda_blas.cc:238] failed to create cublas handle: CUBLAS_STATUS_NOT_INITIALIZED 2020-04-28 11:13:07.202605: E tensorflow/stream_executor/cuda/cuda_blas.cc:238] failed to create cublas handle: CUBLAS_STATUS_NOT_INITIALIZED 2020-04-28 11:13:07.202635: W tensorflow/stream_executor/stream.cc:2041] attempting to perform BLAS operation using StreamExecutor without BLAS support 2020-04-28 11:13:07.202674: W tensorflow/core/common_runtime/base_collective_executor.cc:217] BaseCollectiveExecutor::StartAbort Internal: Blas GEMM launch failed : a.shape=(10000, 4), b.shape=(4, 1024), m=10000, n=1024, k=4 [[{{node dense_1/MatMul}}]] Traceback (most recent call last): File "200428getSortedValuev3.py", line 198, in <module> model2.fit(x=fixed_sentence_by_index, y=training_result_asarray, epochs=10000, verbose=2, validation_split=0.3, callbacks=callbacks_list, batch_size=10000, shuffle=True) File "/usr/local/lib/python3.6/dist-packages/keras/engine/training.py", line 1239, in fit validation_freq=validation_freq) File "/usr/local/lib/python3.6/dist-packages/keras/engine/training_arrays.py", line 196, in fit_loop outs = fit_function(ins_batch) File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/backend.py", line 3727, in __call__ outputs = self._graph_fn(*converted_inputs) File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/eager/function.py", line 1551, in __call__ return self._call_impl(args, kwargs) File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/eager/function.py", line 1591, in _call_impl return self._call_flat(args, self.captured_inputs, cancellation_manager) File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/eager/function.py", line 1692, in _call_flat ctx, args, cancellation_manager=cancellation_manager)) File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/eager/function.py", line 545, in call ctx=ctx) File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/eager/execute.py", line 67, in quick_execute six.raise_from(core._status_to_exception(e.code, message), None) File "<string>", line 3, in raise_from tensorflow.python.framework.errors_impl.InternalError: Blas GEMM launch failed : a.shape=(10000, 4), b.shape=(4, 1024), m=10000, n=1024, k=4 [[node dense_1/MatMul (defined at /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:3009) ]] [Op:__inference_keras_scratch_graph_1128] Function call stack: keras_scratch_graph
미국 국방부가 리눅스로 무기 체계를 개발한다고 한다. 오픈소스를 사용하려면 이런 저런 문제점을 모두 직접 해결해야 한다. 정말 없는 길을 만들어 간다. 기업이 왜 오픈소스로 서비스하지 않는지 알 만하다. 구글같은 능력있는 회사정도 되야 오픈소스로 서비스 할 만하다. 누가 오픈소스로 서비스 한다고 하면 능력자라 인식해야겠다.