콘텐츠로 바로가기

now0930 일지

이런저런 생각

  • 홈
  • 비공개
  • 강좌
  • 잔여 작업 조회
  • 위치

tensorflow 2.1.0 compile

남는 시간에 tensorflow 2.0을 컴파일에 도전했다. 현실은 실패하여 2.1로 목표 재설정. docker 이미지를 사용하면 쉬운데, avx2를 지원하지 않는 CPU를 사용하여 선택할 수 없다. 직접 컴파일하지 않는 한 사용할 수 없다. 최근 개발 이미지를 찾아보니 cuda 10.1, python3 이었다. nvidia-driver는 여러 버전이 설정 되었는데, host pc 버전으로 구동하나 보다. bazel 버전은 3.0이다.

bazel 버전을 2.1.0에 맞는 0.27로 바꿨다. compile 하면 약 6시간 정도 걸린다. 문제가 몇 개 있었다. 전에 램 12GB로 컴파일을 성공했다. 지금 8GB로 해보니, 10,000번 스텝넘어 동작을 멈추고 실패했다. 램을 사기 애매하여 일단 SWAP을 30GB 만들어 컴파일에 성공했다. 그런데 상당히 느리다. 결국 램 8GB를 구매했다. 그런데도 firefox를 띄우고 컴파일하면 에러난다.

메뉴얼은 host에 CUDA를 설치할 필요 없다고 했다. nvidia-driver를 440 버전으로 업데이트 하면 CUDA 10.2를 기본 설치한다. 이게 뭐가 문제냐면 docker gpu 이미지가 10.2을 지원하지 않아 gpu를 사용할 수 없다. 일단 nvidia docker가 10.1 이미지를 띄우면 cuda 10.0으로 내릴 수 없다. 드라이버도 같이 내려야 하는데, 사용 중이어 수정할 수 없나보다. 실패하여 cuda 10.1 이미지를 사용했다. 그러나 nvidia-driver-440으로 cuda 10.1을 사용할 수 없다. 결국 host pc 드라이버를 438로 내렸다.

nvidia driver version 440.82는 CUDA 10.2를 기본 설치한다.

tensorflow 1.12 버전은 host pc driver 440으로 잘 구동한다. 왜 9.0은 실행하는데 10.x 버전을 실행하지 못하는지 모르겠다.

3일째 이 미친 짓을 하고 있다. 뭘 위해서 인지 모르겠다. 지금까지 버린 인건비와 전기 요금을 생각하면 PC 1/3대를 구입했다.

결국 다음 조합으로 컴파일에 성공했다.

  • ubuntu 18.04
  • nvidia-driver 435, cuda 10.1
  • docker image: latest-devel-gpu-py3, cuda 10.1, python 3.

컴파일 거의 마지막 단계에 host python 버전 2와 guest python 버전 3 환경 설정값 다름으로 컴파일을 실패했다. 여기를 참조하여 간단하게 tensorRT를 사용하지 않도록 설정했다. 어차피 내 그래픽 카드는 지원하지 않는다. python2 버전 이미지로 해도 될 듯 하다.

ERROR: /tensorflow_src/tensorflow/tensorflow/python/keras/api/BUILD:129:1: Executing genrule //tensorflow/python/keras/api:keras_python_api_gen_compat_v2 failed (Exit 1)
Traceback (most recent call last):
  File "/root/.cache/bazel/_bazel_root/51f904752746bc15a93061eb1cc3b8cc/execroot/org_tensorflow/bazel-out/host/bin/tensorflow/python/keras/api/create_tensorflow.python_api_2_keras_python_api_gen_compat_v2.runfiles/org_tensorflow/tensorflow/python/tools/api/generator/create_python_api.py", line 27, in <module>nvidia.com/compute/cuda/repos/ubuntu1804/x86_64  cuda-npp-10-1 10.1.243-1 [54.9 MB]
Get:9 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64  cuda-libraries-10-1 10.1.243-1 [2588 B]
Get:10 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64  cuda-nvrtc-dev-10-1 10.1.243-1 [8812 B]

    from tensorflow.python.tools.api.generator import doc_srcs
  File "/root/.cache/bazel/_bazel_root/51f904752746bc15a93061eb1cc3b8cc/execroot/org_tensorflow/bazel-out/host/bin/tensorflow/python/keras/api/create_tensorflow.python_api_2_keras_python_api_gen_compat_v2.runfiles/org_tensorflow/tensorflow/python/__init__.py", line 85, in <module>
    from tensorflow.python.ops.standard_ops import *
  File "/root/.cache/bazel/_bazel_root/51f904752746bc15a93061eb1cc3b8cc/execroot/org_tensorflow/bazel-out/host/bin/tensorflow/python/keras/api/create_tensorflow.python_api_2_keras_python_api_gen_compat_v2.runfiles/org_tensorflow/tensorflow/python/ops/standard_ops.py", line 117, in <module>
    from tensorflow.python.compiler.tensorrt import trt_convert as trt
  File "/root/.cache/bazel/_bazel_root/51f904752746bc15a93061eb1cc3b8cc/execroot/org_tensorflow/bazel-out/host/bin/tensorflow/python/keras/api/create_tensorflow.python_api_2_keras_python_api_gen_compat_v2.runfiles/org_tensorflow/tensorflow/python/compiler/tensorrt/__init__.py", line 22, in <module>
    from tensorflow.python.compiler.tensorrt import trt_convert as trt
  File "/root/.cache/bazel/_bazel_root/51f904752746bc15a93061eb1cc3b8cc/execroot/org_tensorflow/bazel-out/host/bin/tensorflow/python/keras/api/create_tensorflow.python_api_2_keras_python_api_gen_compat_v2.runfiles/org_tensorflow/tensorflow/python/compiler/tensorrt/trt_convert.py", line 28, in <module>
    from tensorflow.compiler.tf2tensorrt import wrap_py_utils
  File "/root/.cache/bazel/_bazel_root/51f904752746bc15a93061eb1cc3b8cc/execroot/org_tensorflow/bazel-out/host/bin/tensorflow/python/keras/api/create_tensorflow.python_api_2_keras_python_api_gen_compat_v2.runfiles/org_tensorflow/tensorflow/compiler/tf2tensorrt/wrap_py_utils.py", line 28, in <module>
    _wrap_py_utils = swig_import_helper()
  File "/root/.cache/bazel/_bazel_root/51f904752746bc15a93061eb1cc3b8cc/execroot/org_tensorflow/bazel-out/host/bin/tensorflow/python/keras/api/create_tensorflow.python_api_2_keras_python_api_gen_compat_v2.runfiles/org_tensorflow/tensorflow/compiler/tf2tensorrt/wrap_py_utils.py", line 24, in swig_import_helper
    _mod = imp.load_module('_wrap_py_utils', fp, pathname, description)
  File "/usr/lib/python3.6/imp.py", line 243, in load_module
    return load_dynamic(name, filename, file)
  File "/usr/lib/python3.6/imp.py", line 343, in load_dynamic
    return _load(spec)
ImportError: /root/.cache/bazel/_bazel_root/51f904752746bc15a93061eb1cc3b8cc/execroot/org_tensorflow/bazel-out/host/bin/tensorflow/python/keras/api/create_tensorflow.python_api_2_keras_python_api_gen_compat_v2.runfiles/org_tensorflow/tensorflow/compiler/tf2tensorrt/_wrap_py_utils.so: undefined symbol: _ZN15stream_executor14StreamExecutor18EnablePeerAccessToEPS0_
----------------
Note: The failure of target //tensorflow/python/keras/api:create_tensorflow.python_api_2_keras_python_api_gen_compat_v2 (with exit code 1) may have been caused by the fact that it is a Python 2 program that was built in the host configuration, which uses Python 3. You can change the host configuration (for the entire build) to instead use Python 2 by setting --host_force_python=PY2.

If this error started occurring in Bazel 0.27 and later, it may be because the Python toolchain now enforces that targets analyzed as PY2 and PY3 run under a Python 2 and Python 3 interpreter, respectively. See https://github.com/bazelbuild/bazel/issues/7899 for more information.
----------------
Target //tensorflow/tools/pip_package:build_pip_package failed to build
Use --verbose_failures to see the command lines of failed build steps.
INFO: Elapsed time: 26069.299s, Critical Path: 545.35s
INFO: 26668 processes: 26668 local.
FAILED: Build did NOT complete successfully

드디어 2.1 컴파일을 성공했다. 한 번 컴파일 끝내기 위해 7시간씩 썼다. 총 5번은 실패했고 6번째 성공했다. 업데이트 전 제대로 실행됨을 확인했다. update 하고 실행하니 또 에러 뜬다. cuda 10.2 문제임을 여기에서 확인했다. 다시 버전을 내렸다.

2020-04-28 11:13:07.200201: E tensorflow/stream_executor/cuda/cuda_blas.cc:238] failed to create cublas handle: CUBLAS_STATUS_NOT_INITIALIZED
2020-04-28 11:13:07.202605: E tensorflow/stream_executor/cuda/cuda_blas.cc:238] failed to create cublas handle: CUBLAS_STATUS_NOT_INITIALIZED
2020-04-28 11:13:07.202635: W tensorflow/stream_executor/stream.cc:2041] attempting to perform BLAS operation using StreamExecutor without BLAS support
2020-04-28 11:13:07.202674: W tensorflow/core/common_runtime/base_collective_executor.cc:217] BaseCollectiveExecutor::StartAbort Internal: Blas GEMM launch failed : a.shape=(10000, 4), b.shape=(4, 1024), m=10000, n=1024, k=4
	 [[{{node dense_1/MatMul}}]]
Traceback (most recent call last):
  File "200428getSortedValuev3.py", line 198, in <module>
    model2.fit(x=fixed_sentence_by_index, y=training_result_asarray, epochs=10000, verbose=2, validation_split=0.3, callbacks=callbacks_list, batch_size=10000, shuffle=True)
  File "/usr/local/lib/python3.6/dist-packages/keras/engine/training.py", line 1239, in fit
    validation_freq=validation_freq)
  File "/usr/local/lib/python3.6/dist-packages/keras/engine/training_arrays.py", line 196, in fit_loop
    outs = fit_function(ins_batch)
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/backend.py", line 3727, in __call__
    outputs = self._graph_fn(*converted_inputs)
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/eager/function.py", line 1551, in __call__
    return self._call_impl(args, kwargs)
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/eager/function.py", line 1591, in _call_impl
    return self._call_flat(args, self.captured_inputs, cancellation_manager)
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/eager/function.py", line 1692, in _call_flat
    ctx, args, cancellation_manager=cancellation_manager))
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/eager/function.py", line 545, in call
    ctx=ctx)
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/eager/execute.py", line 67, in quick_execute
    six.raise_from(core._status_to_exception(e.code, message), None)
  File "<string>", line 3, in raise_from
tensorflow.python.framework.errors_impl.InternalError:  Blas GEMM launch failed : a.shape=(10000, 4), b.shape=(4, 1024), m=10000, n=1024, k=4
	 [[node dense_1/MatMul (defined at /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:3009) ]] [Op:__inference_keras_scratch_graph_1128]

Function call stack:
keras_scratch_graph

미국 국방부가 리눅스로 무기 체계를 개발한다고 한다. 오픈소스를 사용하려면 이런 저런 문제점을 모두 직접 해결해야 한다. 정말 없는 길을 만들어 간다. 기업이 왜 오픈소스로 서비스하지 않는지 알 만하다. 구글같은 능력있는 회사정도 되야 오픈소스로 서비스 할 만하다. 누가 오픈소스로 서비스 한다고 하면 능력자라 인식해야겠다.

이 글 공유하기:

  • Tweet
발행일 2020-04-28글쓴이 이대원
카테고리 tensorflow 태그 bazel, compile, cuda, docker, GPU, tensorflow

댓글 남기기응답 취소

이 사이트는 Akismet을 사용하여 스팸을 줄입니다. 댓글 데이터가 어떻게 처리되는지 알아보세요.

글 내비게이션

이전 글

mp3 태그로 plexmedia server 정보 업데이트(2)

다음 글

빅데이터를 지배하는 통계의 힘

2025 5월
일 월 화 수 목 금 토
 123
45678910
11121314151617
18192021222324
25262728293031
4월    

최신 글

  • common mode, differential mode 2025-05-11
  • signal conditioner, 신호 처리기 2025-05-10
  • strain gage 2025-05-09
  • 칼만 필터 2025-05-01
  • positioner(I/P) 2025-04-26

카테고리

  • 산업계측제어기술사
  • 삶 자국
    • 책과 영화
    • 투자
  • 생활코딩
    • LEGO
    • ROS
    • tensorflow
  • 전기기사
  • 피아노 악보

메타

  • 로그인
  • 엔트리 피드
  • 댓글 피드
  • WordPress.org

페이지

  • 소개
  • 잔여 작업 조회
    • 작업 추가
    • 작업의 사진 조회
    • 작업 수정 페이지
  • 사진
    • GPS 입력된 사진
    • 사진 조회
  • 위치
    • 하기 휴가 방문지
    • 해외 출장

태그

android bash c docker driver FSM gps java kernel LEGO linux mysql network program opcua open62541 plc programmers python raspberry reinforcementLearning ros state space system program tensorflow transfer function 경제 미국 민수 삼국지 세계사 실기 에너지 역사 유전자 일본 임베디드 리눅스 전기기사 조선 중국 채윤 코딩 테스트 통계 한국사 한국어

팔로우하세요

  • Facebook
now0930 일지
WordPress로 제작.
 

댓글 로드중...